
Song Han

On-Device Training Under
256KB Memory

MIT, OmniML
songhan.mit.edu

mcunet.mit.edu

Hardware, AI, and Neural-nets

open source, co-design

http://github.com/mit-han-lab

http://songhan.mit.edu
http://mcunet.mit.edu
http://github.com/mit-han-lab/

Can we Learn on the Edge?
AI systems need to continually adapt to new data collected from the sensors
Not only inference, but also run back-propagation on edge devices

●On-device learning: better privacy, lower cost, customization, life-long learning

●Training is more expensive than inference, hard to fit edge hardware (limited memory)

User Intelligent Edge Devices

New and Sensitive
Data

…

Cloud Server

On-device Learning

Cloud-based Learning

Song Han: Efficient Deep Learning Computing with Sparsity

Background work: MCUNet: Bring AI to IoT Devices
Unlock ultra low-power AIoT Applications
• TinyML: design light-weighted neural networks and deploy on cheap edge devices that has

low power, computing, and memory.

• Low-cost ($1-2), low-power, small, everywhere in our lives.

• AI on MCU is hard: No DRAM. No OS. Extreme memory constraint.

• Existing work optimize for #parameters, but #activation is the real bottleneck.

• MCUNet: first to achieve >70% ImageNet top1 accuracy on a microcontroller.

• Cloud AI: ResNet; Mobile AI: MobileNet; Tiny AI: MCUNet.

3

0 MB

1 MB

2 MB

3 MB

4 MB

5 MB

2013 2015 2017 2019 2021
Pe

ak
 A

ct
iv

at
io

n
M

em
or

y

VGG-16

MobileNet-V2

MCUNet-V2

~71% top-1 accuracy on ImageNet.

ResNet-18

Song Han: Efficient Deep Learning Computing with Sparsity

Detect person using only 30KB of memory!

4
MCUNet V2, NeurIPS’21

0

30

60

90

120

30

119

MCUNet MCUNetV2

4x
smaller

Peak SRAM (kB) @ 90% VWW accuracy

V
W

W
 A

cc
ur

ac
y

(%
)

84

86

88

90

92

94

20 88 156 224 292 360

4.0×smaller

Measured Peak SRAM (kB)

Flash < 1MB

30kB

118kB62kB

256kB constraint
on MCU

+4.0%

our solution

In 2019

our solution

In 2020

our solution

In 2021

Background work: MCUNet-v2: Patch-Based Inference

https://hanlab.mit.edu/projects/tinyml/mcunet/

Training Memory is much Larger than Inference

0

125

250

375

500

M
bV

2
M

em
or

y
Fo

ot
pr

in
t (

M
B)

Inference
Batch Size = 1

Training
Batch Size = 8

• Edge devices have tight memory constraints. The training memory footprint of
neural networks can easily exceed the limit.

• Edge devices are energy-constrained. Failing to fit the training process into the
energy-efficient on-chip SRAM will significantly increase the energy cost.

Raspberry Pi 1 DRAM
256MB

#Activation is the Memory Bottleneck, not #Trainable Parameters

0

200

400

600

800

Param (MB) Activation (MB)

707

102

ResNet-50 MbV2-1.4

7x larger

#Activation is the Memory Bottleneck, not #Trainable Parameters

• Previous methods focus on reducing the number of parameters or
FLOPs, while the main bottleneck does not improve much.

0

200

400

600

800

Param (MB) Activation (MB)

ResNet-50 MbV2-1.4

The main bottleneck does not
improve much.

4.3x

1.1x

7x larger

What about just finetune the last layer?

• Full: Fine-tune the full network. Better accuracy but highly inefficient.
• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.

0

200

400

600

800

Memory Cost (MB)
50

59

68

77

86

95

Accuracy (%)

ResNet-50 (Full) ResNet-50 (Last) TinyTL (ours)

Significant
accuracy

 degradation!

Related Work: Parameter-Efficient Transfer Learning

0

10

20

30

#Trainable Param (M)
50

59

68

77

86

95

Cars Top1 (%)

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last) TinyTL (ours)

12x

• Full: Fine-tune the full network. Better accuracy but highly inefficient.
• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.
• BN+Last: Fine-tune the BN layers and the last layer. Parameter-efficient.

Related Work: Parameter-Efficient Transfer Learning

0

200

400

600

800

Memory Cost (MB)
50

59

68

77

86

95

Cars Top1 (%)

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last) TinyTL (ours)

1.8x Parameter-efficiency
does not directly

translate to memory-
efficiency (12x vs 1.8x)

• Full: Fine-tune the full network. Better accuracy but highly inefficient.
• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.
• BN+Last: Fine-tune the BN layers and the last layer. Parameter-efficient, but the

memory saving is limited.

Parameter-Efficiency does not Directly Translate to Memory-Efficiency

0

200

400

600

800

Memory Cost (MB)
50

59

68

77

86

95

Cars Top1 (%)

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last) TinyTL (ours)

1.8x
Parameter-efficiency does
not directly translate to
memory-efficiency

12%

• Full: Fine-tune the full network. Better accuracy but highly inefficient.
• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.
• BN+Last: Fine-tune the BN layers and the last layer. Parameter-efficient, but the

memory saving is limited. Significant accuracy loss.

TinyTL: Memory-Efficient Transfer Learning

NeurIPS’20

0

200

400

600

800

Memory Cost (MB)

6x

50

59

68

77

86

95

Cars Top1 (%)

ResNet-50 (Full) ResNet-50 (Last) ResNet-50 (BN+Last) TinyTL (ours)

• Full: Fine-tune the full network. Better accuracy but highly inefficient.
• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.
• BN+Last: Fine-tune the BN layers and the last layer. Parameter-efficient, but the

memory saving is limited. Significant accuracy loss.
• TinyTL: fine-tune bias only + lite residual learning: high accuracy, large memory saving

1.8x
12%

On-Device Training under 256KB Memory

• Reducing memory usage by >1000x

+ Operator reordering

652 MB

303 MB

41.5 MB
PyTorch (cloud)

TensorFlow (cloud)

MNN (edge)

Tiny Training Engine

+ Quantization-aware scaling

+ Sparse layer/tensor update

256KB constraint

149 KB

0.1 MB 1 MB 10 MB 100 MB

5.7 MB

4.1MB

420 KB

7.3x

1.4x

10.1x

2.8x

2077x

1. Address Optimization Difficulty of Quantized Graphs

(b) Real Quantization  
(on-device training)

(a) Fake Quantization  
(quantization aware training)

Fake Real
Weight FP32 INT8

Activation FP32 INT8
Batch Norm Yes No

• Fake quantized graph vs. Real quantized graph

1. Address Optimization Difficulty of Quantized Graphs
• Real quantized graphs vs. fake quantized graphs

Making training difficult:
• Mixed precisions: int8/int32/fp32…
• Lack BatchNorm

75.4

86.0

Performance Comparison (average on 10 datasets)

10.6%
top-1↓

To
p-

1
A

cc
ur

ac
y

(%
)

FP32
SGD

Int8
SGD

(a) Real Quantization.

1. Address Optimization Difficulty of Quantized Graphs

- Why is the training convergence worse?  

1. Address Optimization Difficulty of Quantized Graphs

- Why is the training convergence worse?  
- The scale of weight and gradients does not match in real
quantized training!

-5

5

15

25

35
fp32 int8

Tensor Index

lo
g 1

0(∥
W

∥/
∥G

∥)

Quantization overview

Per Channel scaling

Weight and gradient ratios are off by Sw

Thus, re-scale the gradients

QAS: Quantization-Aware Scaling
QAS addresses the optimization difficulty of quantized graphs

-5

5

15

25

35
fp32 int8 int8+QAS

Tensor Index

lo
g 1

0(∥
W

∥/
∥G

∥)

QAS aligns the W/G
ratio with fp32

QAS: Quantization-Aware Scaling
QAS addresses the optimization difficulty of quantized graphs

86.9
84.5

64.8

75.4

86.0

Performance Comparison (average on 10 datasets)

Improve
convergence

Extra memory
(3x)

To
p-

1
A

cc
ur

ac
y

(%
)

FP32 SGD Int8 SGD Int8 LARS Int8 Adam Int8 QAS
(ours)

QAS: Quantization-Aware Scaling
QAS addresses the optimization difficulty of quantized graphs

Wi Wi+1bi bi+1

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

updated fixed

c1

c2

2. Sparse Layer/Tensor Update

Reduce by 4x
Activation to store: (H, M)

Weight in SRAM: (M, H)

Wi Wi+1bi bi+1

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

updated fixed

c1

c2

Dense Backward

G.T
X

(dW).T

=

(H, N) (N, M) (H, M)dy
dw

:

Activation to store: (H, 0.25*M)

Weight in SRAM: (0.25*M, N)

Sparse Tensor Backward

G.T
X

(dW).T

=

(H, N) (N, M) (H, M)

X
(dw).T

dy
dw

:

2. Sparse Layer/Tensor Update

Sparse Update: Lower Memory, Higher Accuracy

Sparse update can achieve higher transfer learning accuracy using
4.5-7.5x smaller extra memory.

3. Tiny Training Engine (TTE)

Previous DL Training

1. Computation Graph (forward)

Previous DL Training

1. Computation Graph (forward)

2. Autograd Engine

f(x) → f′ (x)

Previous DL Training

1. Computation Graph (forward)

2. Autograd Engine

f(x) → f′ (x)

3. Computation Graph (backward)

Previous DL Training

1. Computation Graph (forward)

2. Autograd Engine

f(x) → f′ (x)

3. Computation Graph (backward)

4. Execution Engine

Detailed execution schedules.

Limitations with Previous Training Infra

• Runtime is heavy

• Autodiff at runtime

• Heavy dependencies and large binary size

• Operators optimized for the cloud, not for edge

• Memory is heavy

• A lot of intermediate (and unused) buffers

• Has to compute full gradients

Tiny Training Engine

CodeGen

Tune Schedules

Executable
Binaries for Training

Python Defined
Models

Traced
Static Graph Forward Graph

Backward Graph

Compile-time
AutoDiff IR IR

Graph
Opt.

: Runtime

: Compile-Time

Tiny Training Engine (TTE) separates the runtime and compile-time.

TTE offloads most workloads like autodiff / graph optimization / perform tuning into compile-time.

Thus, the overhead of runtime is minimized.

• Graph-level optimizations:

• Sparse layer / sparse tensor update

• Operator reordering and in-place update

• Constant folding

• Dead-code elimination

Tiny Training Engine Workflow

CodeGen

Tune Schedules

Executable
Binaries for Training

Python Defined
Models

Traced
Static Graph Forward Graph

Backward Graph

Calculate derivatives
at compilation time IR IR

Graph
Opt.

: Runtime

: Compile-Time

Tiny Training Engine supports backward graph pruning and sparse update at IR-level.

After pruning, un-used weights and sub-tensors are pruned from DAG => 8-10x memory saving

Combined with operator reorder => 22-28x memory saving

Pe
ak

 M
em

 (K
B

)↓

0

1250

2500

3750

5000

201140149
537425420

4,510

3,362

4,226

28x
smaller

sparse update + reordersparse updatefull update

MbV2 Proxyless MCUNet

22x
smaller

24x
smaller

Sparse Layer / Sparse Tensor Update

• Graph-level optimizations:

• Sparse layer / sparse tensor update

• Operator reordering and in-place update

• Constant folding

• Dead-code elimination

Tiny Training Engine

CodeGen

Tune Schedules

Executable
Binaries for Training

Python Defined
Models

Traced
Static Graph Forward Graph

Backward Graph

Calculate derivatives
at compilation time IR IR

Graph
Opt.

: Runtime

: Compile-Time

Operator Reordering and Inplace Update

By reordering, the gradient update can be immediately applied.Gradients
buffer can be released earlier before before back-propagating to earlier

layers, leading to 2.7x ~ 3.1x peak memory reduction.

Life Cycle Analysis

Operator life-cycle analysis shows memory footprint
can be greatly reduced by operator re-ordering.

Life cycle (operator index)

(a) Vanilla backward graph (b) Optimized backward graph

M
em

 F
oo

tp
rin

t (
K

B
)↓

Life cycle (operator index)

Trainable weightsTraining (weights)Training (activation)Inference Training (gradients)

128

256

384

512

0 30 60 90 120 150 180 210 300270240

in-place
gradient update

operator
fusion

2.8x reduction
fused op

fused op

128

256

384

512

0 30 60 90 120 150 180 210 300270240

Tiny Training Engine

CodeGen

Tune Schedules

Executable
Binaries for Training

Python Defined
Models

Traced
Static Graph Forward Graph

Backward Graph

Calculate derivatives
at compilation time IR IR

Graph
Opt.

: Runtime

: Compile-Time

La
te

nc
y

(m
s)
↓

0

3500

7000

10500

14000

583457403

5,607

4,111
3,448

13,398

10,523

8,501

21x
smaller

MbV2 Proxyless MCUNet

23x
smaller23x

smaller

TTE, sparseTF-Lite, sparseTF-Lite, full
(projected, OOM)

Our optimized operators
demonstrate 21x ~ 23x speedup

over TensorFlow-Lite.

On-Device Training Demo

Song Han: Efficient Deep Learning Computing with Sparsity

Tiny Training Engine on Diverse Hardware Platforms
La

te
nc

y
(m

s)

0.0

10.0

20.0

30.0

40.0

Dense Update Sparse Update (ours)

14.46

25.96

13.9013.90

1.4x

La
te

nc
y

(m
s)

0.0

1.5

3.0

4.5

6.0

Dense Update Sparse Update (ours)

1.19

3.55

1.61.6

Forward Backward

La
te

nc
y

(m
s)

0.0

20.0

40.0

60.0

80.0

Dense Update Sparse Update (ours)

24.40

73.98

4.44.4

1.8x 3.0x

The measured timed includes the complete forward + backward.

The benchmark model is MobilenetV2-035 with input resolution 128x128.

Our engine supports various platforms and our sparse update shows consistent speedup 1.4 to 3.0x.

Qualcomm S8Gen1 CPU Jetson Nano GPU Raspberry Pi 4B+ CPU

Song Han: Efficient Deep Learning Computing with Sparsity

Federated On-Device Learning
From single device to multiple devices

52

Only gradients are sharing across, the user
data never leaves local device.

Connected through WiFi or Cellular network
Bandwidth up to 1Gb/s, Latency ~200ms.

4G/5G

Federated learning suffers from limited communication
bandwidth and long latency for mobile devices.

Song Han: Efficient Deep Learning Computing with Sparsity

Deep Gradient Compression: Reduce Bandwidth

53
Deep Gradient Compression, ICLR’18

g gsparsified Δg
Gradient Accumulation

%&

'&+1

! ⋅ '&−*

! ⋅ '&

%&+*

Update

'& Accumulation

Momentum Correction

- Reduce the bandwidth by Deep Gradient Compression,
which can reduce the gradients by 500x without losing
accuracy.

https://github.com/synxlin/deep-gradient-compression

Song Han: Efficient Deep Learning Computing with Sparsity

Delayed Gradient Averaging: Tolerate Latency

54
Delayed Gradient Averaging, NeurIPS’21

Sp
ee

du
p

0

4

8

12

16

1 2 4 8 16

13.1

7.1

3.7

1.7
1.0

6.8

3.3
1.7

0.81.0

4.2

2.1
1.00.41.0

FedAvg (K=5)
FedAvg(K=10)
DGA (K=5, D=20)

2 3 4 5

Send and recv params

1 6

W/o delay: all the local machines are blocked to wait
for the synchronization to finish

2 3 4 5

Send and recv params

1 6

With delay: Worker keep performing local updates
while the parameters are in transmission.

https://dga.hanlab.ai/

Song Han: Efficient Deep Learning Computing with Sparsity

https://hanlab.mit.edu/

1. Learning both Weights and
Connections for Efficient
Neural Network, NeurIPS’15

2. Deep Compression, ICLR’16
3. AMC, ECCV’18
4. ProxylessNAS, ICLR’19
5. Once For All, ICLR’20
6. HAT, ACL’20
7. Anycost GAN, CVPR’21
8. SPVNAS, ECCV’21
9. Lite Pose, CVPR’22
10. NAAS, DAC’21
11. QuantumNAS, HPCA’22
12. QuantumNAT, DAC’22
13. QOC, DAC’22

14. MCUNet, NeurIPS’20
15. MCUNet-V2, NeurIPS’21
16. TinyTL, NeurIPS’20
17. MCUNet-V3, Arxiv’22
18. DGC, ICLR’18
19. DGA, NeurIPS’21
20. PVCNN, NeurIPS’19
21. Fast-LiDARNet, ICRA’21
22. BEVFusion, Arxiv’22
23. TSM, ICCV’19
24. GAN Compression, CVPR’20
25. SpAtten, HPCA’21
26. SpArch, HPCA’20
27. PointAcc, Micro’20
28. TorchSparse, SysML’22

55

HardwareSoftware

Inference

Training

Dense

Sparse

Tiny Models

Big Foundation
Models

Single
Sensor

Multi-Sensor
Fusion

Classic

Quantum

TinyML and Efficient Deep Learning

http://hanlab.mit.edu
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1510.00149
https://hanlab.mit.edu/projects/amc/
https://hanlab.mit.edu/projects/proxylessNAS/
https://hanlab.mit.edu/projects/ofa
https://hat.mit.edu/
https://hanlab.mit.edu/projects/anycost-gan/
https://spvnas.mit.edu/
https://github.com/mit-han-lab/litepose
https://hanlab.mit.edu/projects/naas
http://qmlsys.mit.edu/
http://qmlsys.mit.edu/
http://qmlsys.mit.edu/
https://hanlab.mit.edu/projects/tinyml/mcunet/
https://hanlab.mit.edu/projects/tinyml/mcunet/
https://hanlab.mit.edu/projects/tinyml/tinyTL/
https://arxiv.org/abs/2206.15472
https://github.com/synxlin/deep-gradient-compression
https://dga.hanlab.ai/
http://pvcnn.mit.edu/
https://hanlab.mit.edu/projects/spvnas/
https://arxiv.org/abs/2205.13542
https://hanlab.mit.edu/projects/tsm/
https://hanlab.mit.edu/projects/gancompression
https://spatten.mit.edu/
https://sparch.mit.edu/
http://hanlab.mit.edu/projects/pointacc
https://torchsparse.mit.edu/

MIT AI Hardware
Program

MIT Microsystems Technology Laboratories (SoE)

MIT Quest for Intelligence – Corporate (SCC)

Co-Leads: Jesús del Alamo and Aude Oliva

Internal Advisory Board Chair: Anantha Chandrakasan

1

Hardware for AI and Neural-net

Proposal for DARPA-NVIDIA-SDH Initiative

PI: Song Han

Project 1: ”Efficient Hardware Primitives for Sparse Linear Algebra”

Pruning techniques [Han’15] show that DNN models can be pruned to very sparse,
saving the FLOPs by 10x and model size by 8x (FC layer, index included). However, it’s
challenging for general purpose hardware to take advantage of sparsity. EIE [Han’16] is
the first hardware accelerator for sparse DNN, it’s efficient but it lacks flexibility. TACO
[Kjolstad’17] is a flexible compiler for sparse linear algebra on CPU, but it lacks
accelerator support. Therefore, I plan to work on an specialized accelerator for sparse
linear algebra. There are two basic operations to be accelerated: union (OR) and join
(AND). Software implementation need O(n) cycles. I plan to work on O(log(n)) time
complexity, O(n) area complexity arrays; or O(1) time complexity, O(n^2) space
complexity arrays. After that, I’d like to implement this architecture in FPGA or ASIC,
then integrate the HW primitive into TACO. Then, I want to co-design the machine
learning models that are not only pruned to be sparse, but also with the optimal
granularity of sparsity that fits the accelerator. Lastly, I’ll demonstrate a few machine
learning applications accelerated with such sparse primitives: machine translation,
speech recognition, image classification, and Progressive GAN, which makes real-time
AI and embedded-AI possible for IoT devices. It can also make cloudAI more energy
efficient by saving the electric bill and total cost of ownership (TCO).

Potential product impact for NVIDIA: future DLA architectures in Xavier, Orin, etc.

Project 2: “Optimal Number Representation for Efficient Training/Inference”

“Number representation” is a fundamental problem for efficient machine learning. For
inference, Linear Quantization [TensorRT] or Kmeans Quantization [Han’16] are two
extremes of quantization. The former has easy hw implementation but poor
expressiveness. The latter has inefficient hw implementation (need register lookup
every time) but flexible expressiveness. For training, Conventional fp16 or fp32 are also
inefficient, since training DNNs needs more dynamic range and exciting methods need
careful scaling factor tuning to avoid underflow or overflow [NVIDIA’17]. Given the large
design space, we are interested in learning to learn the optimal number representation
for deep learning. The design space include:  
[linear quantization, log quantization, kmeans quantization] x 
[weight, activation, gradient] x  
[training, inference] x [channel number] x [layer number] x [bit width] x [decimal point]  
This is a large design space that’s hard to be explored by human. It should be explored
by AI. I plan to use machine learning techniques to find the best number representation
for machine learning. It’s a co-design of number representation together with model
architecture, trading off hardware efficiency and model accuracy. I’d like to push the
pareto frontier of such trade-off.

Potential product impact for NVIDIA: future TensorRT and cuDNN libraries.

HAN Lab Students: Yujun Lin (Arch PhD), Hanrui Wang (Arch PhD), Zhijian Liu (ML PhD)

Hardware for AI and Neural-net

Proposal for DARPA-NVIDIA-SDH Initiative

PI: Song Han

Project 1: ”Efficient Hardware Primitives for Sparse Linear Algebra”

Pruning techniques [Han’15] show that DNN models can be pruned to very sparse,
saving the FLOPs by 10x and model size by 8x (FC layer, index included). However, it’s
challenging for general purpose hardware to take advantage of sparsity. EIE [Han’16] is
the first hardware accelerator for sparse DNN, it’s efficient but it lacks flexibility. TACO
[Kjolstad’17] is a flexible compiler for sparse linear algebra on CPU, but it lacks
accelerator support. Therefore, I plan to work on an specialized accelerator for sparse
linear algebra. There are two basic operations to be accelerated: union (OR) and join
(AND). Software implementation need O(n) cycles. I plan to work on O(log(n)) time
complexity, O(n) area complexity arrays; or O(1) time complexity, O(n^2) space
complexity arrays. After that, I’d like to implement this architecture in FPGA or ASIC,
then integrate the HW primitive into TACO. Then, I want to co-design the machine
learning models that are not only pruned to be sparse, but also with the optimal
granularity of sparsity that fits the accelerator. Lastly, I’ll demonstrate a few machine
learning applications accelerated with such sparse primitives: machine translation,
speech recognition, image classification, and Progressive GAN, which makes real-time
AI and embedded-AI possible for IoT devices. It can also make cloudAI more energy
efficient by saving the electric bill and total cost of ownership (TCO).

Potential product impact for NVIDIA: future DLA architectures in Xavier, Orin, etc.

Project 2: “Optimal Number Representation for Efficient Training/Inference”

“Number representation” is a fundamental problem for efficient machine learning. For
inference, Linear Quantization [TensorRT] or Kmeans Quantization [Han’16] are two
extremes of quantization. The former has easy hw implementation but poor
expressiveness. The latter has inefficient hw implementation (need register lookup
every time) but flexible expressiveness. For training, Conventional fp16 or fp32 are also
inefficient, since training DNNs needs more dynamic range and exciting methods need
careful scaling factor tuning to avoid underflow or overflow [NVIDIA’17]. Given the large
design space, we are interested in learning to learn the optimal number representation
for deep learning. The design space include:  
[linear quantization, log quantization, kmeans quantization] x 
[weight, activation, gradient] x  
[training, inference] x [channel number] x [layer number] x [bit width] x [decimal point]  
This is a large design space that’s hard to be explored by human. It should be explored
by AI. I plan to use machine learning techniques to find the best number representation
for machine learning. It’s a co-design of number representation together with model
architecture, trading off hardware efficiency and model accuracy. I’d like to push the
pareto frontier of such trade-off.

Potential product impact for NVIDIA: future TensorRT and cuDNN libraries.

HAN Lab Students: Yujun Lin (Arch PhD), Hanrui Wang (Arch PhD), Zhijian Liu (ML PhD)

Hardware, AI and Neural-nets

TinyML and Efficient AI

Media:

songhan.mit.edu
tinyml.mit.edu

youtube.com/c/MITHANLab
github.com/mit-han-lab

Sponsors:

https://songhan.mit.edu
http://hanlab.mit.edu
http://youtube.com/c/MITHANLab
https://github.com/mit-han-lab

