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Can we Learn on the Edge?

Al systems need to continually adapt to new data collected from the sensors
Not only inference, but also run back-propagation on edge devices

Cloud-based Learning

On-device Learning
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-On-device learning: better privacy, lower cost, customization, life-long learning

- Training Is more expensive than inference, hard to fit edge hardware (limited memory)



Background work: MCUNet: Bring Al to loT Devices

Unlock ultra low-power AloT Applications

* TinyML: design light-weighted neural networks and deploy on cheap edge devices that has
low power, computing, and memory.

e Low-cost ($1-2), low-power, small, everywhere in our lives.

Al on MCU is hard: No DRAM. No OS. Extreme memory constraint.

* EXxisting work optimize for #parameters, but #activation is the real bottleneck.
* MCUNEet: first to achieve >70% ImageNet top1 accuracy on a microcontroller.
 Cloud Al: ResNet; Mobile Al: MobileNet; Tiny Al: MCUNEet.

~71% top-1 accuracy on ImageNet.
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I Background work: MCUNet-v2: Patch-Based Inference

Detect person using only 30KB of memory!
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MCUNet V2, NeurlPS’21



https://hanlab.mit.edu/projects/tinyml/mcunet/

Training Memory iIs much Larger than Inference
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» Edge devices have tight memory constraints. The training memory footprint of
neural networks can easily exceed the limit.

» Edge devices are energy-constrained. Failing to fit the training process into the
energy-efficient on-chip SRAM will significantly increase the energy cost.



I #Activation is the Memory Bottleneck, not #Trainable Parameters
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I #Activation is the Memory Bottleneck, not #Trainable Parameters

B ResNet-50 B MbV2-1.4
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* Previous methods focus on reducing the number of parameters or
FLOPSs, while the main bottleneck does not improve much.



| What about just finetune the last layer?

[ ResNet-50 (Full) B ResNet-50 (Last)
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 Full: Fine-tune the full network. Better accuracy but highly inefficient.
 Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.



| Related Work: Parameter-Efficient Transfer Learning
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* Full: Fine-tune the full network. Better accuracy but highly inefficient.
 Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.
. . Fine-tune the BN layers and the last layer. Parameter-efficient.



| Related Work: Parameter-Efficient Transfer Learning

B ResNet-50 (Full) B ResNet-50 (Last) ResNet-50 (BN+Last)
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 Full: Fine-tune the full network. Better accuracy but highly inefficient.

 Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.

. . Fine-tune the BN layers and the last layer. Parameter-efficient, but the
memory saving is limited.



I Parameter-Efficiency does not Directly Translate to Memory-Efficiency
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Parameter-efficiency does
not directly translate to
memory-efficiency

 Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.
. Fine-tune the BN layers and the last layer. Parameter-efficient, but the
memory saving is limited. Significant accuracy loss.



| TinyTL: Memory-Efficient Transfer Learning

[ ResNet-50 (Full) I ResNet-50 (Last) ResNet-50 (BN+Last) B TinyTL (ours)
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 Full: Fine-tune the full network. Better accuracy but highly inefficient.

 Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.

. . Fine-tune the BN layers and the last layer. Parameter-efficient, but the
memory saving is limited. Significant accuracy loss.

* TinyTL: fine-tune bias only + lite residual learning: high accuracy, large memory saving

NeurlPS’20



On-Device Training under 256KB Memory

* Reducing memory usage by >1000x

5256KB constraint
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1. Address Optimization Difficulty of Quantized Graphs

» Fake quantized graph vs. Real quantized graph
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1. Address Optimization Difficulty of Quantized Graphs

* Real quantized graphs vs. fake quantized graphs

Making training difficult:
» Mixed precisions: int8/int32/fp32...
» Lack BatchNorm

Performance Comparison (average on 10 datasets)

10.6%
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1. Address Optimization Difficulty of Quantized Graphs

- Why is the training convergence worse?
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1. Address Optimization Difficulty of Quantized Graphs

- Why is the training convergence worse?

- The scale of weight and gradients does not match in real

quantized training!
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QAS: Quantization-Aware Scaling

QAS addresses the optimization difficulty of quantized graphs

Quantization overview

Vints = cast2int8(sep3z * (WintsXints + b;nesz)l,

Per Channel scaling

quantize —
W=8W°(W/Sw) ~ SW°W, GWzSW’GWa

Weight and gradient ratios are off by Sw

IWI/IGwl =~ [W/swll/lsw - Gwll =[5 { W/ G

Thus, re-scale the gradients
Gw =Gw -sw, Gp=Gg sw - 5x-=Gg- 57
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QAS: Quantization-Aware Scaling

QAS addresses the optimization difficulty of quantized graphs

N e o2 Al (2 2
Gw =Gw sw, Gp=Gg: sw - sx

= Gg - s

—2

QAS aligns the W/Gl
ratio with fp32

— fp32

A

A

A

A

h

W)

— Int8

1l

iINt8+QAS

A

MV

Tensor Index




QAS: Quantization-Aware Scaling

QAS addresses the optimization difficulty of quantized graphs

Performance Comparison (average on 10 datasets)
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2. Sparse Layer/Tensor Update

W., b, B updated O fixed

W, b,

(a) full update (b) bias-only update (c) sparse layer update d) sparse tensor update




2. Sparse Layer/Tensor Update

Wi by

(a) full update (b) bias-only update (c) sparse layer update

Dense Backward

(H, N) (N, M) (H, M)

Activation to store: (
Weight in SRAM: (M, H)

i I

ﬁ
Reduce by 4x

B updated O fixed

(H, M)

Activation to store: (H, 0.25*M)

Weight in SF

AM: (0.25*M, N)



Average Acc (%)

Sparse Update: Lower Memory, Higher Accuracy

update last k biases
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Sparse update can achieve higher transfer learning accuracy using
4.5-7.5x smaller extra memory.




3. Tiny Training Engine (TTE)

compile time runtime ,

Il Vewar = 0 = |
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backward graph
(a) input model  (b) compile-time autodiff (c¢) graph pruning  (d) op reordering  (e) on-dev1ce training

online
update




Previous DL Training

1. Computation Graph (forward)



Previous DL Training

1. Computation Graph (forward)

@ 2. Autograd Engine

J(x) = f(x)
(o



Previous DL Training

1. Computation Graph (forward) 3. Computation Graph (backward)

@ 2. Autograd Engine ‘@'

J(x) = f(x)
(o (ous)




Previous DL Training

1. Computation Graph (forward) 3. Computation Graph (backward)

@ 2. Autograd Engine ‘@'

J(x) = f(x)
(o (ou)

4. Execution Engine

Detailled execution schedules.



Limitations with Previous Training Infra

* Runtime Is heavy
 Autodiff at runtime
* Heavy dependencies and large binary size

» Operators optimized for the cloud, not for edge

* Memory is heavy
* A lot of intermediate (and unused) buffers

» Has to compute full gradients



Tiny Training Engine

- Compile-Time

o =
R/
Python Defined Backward Graph Tune Schedules : Runtime
Compile-time Opt.
Traced
Static Graph

AutoDiff

Forward Graph

CodeGen . E_xecutable_ .
Binaries for Training

Tiny Training Engine (TTE) separates the runtime and compile-time.

TTE offloads most workloads like autodiff / graph optimization / perform tuning into compile-time.
Thus, the overhead of runtime is minimized.



Tiny Training Engine Workflow

: Compile-Time
Pythl\(/)lrclxlj)eel;lned Backward Graph Tune Schedules : Runtime
Graph
Calculate derivatives Opt.
CodeGen : E_xecutable_ :
Binaries for Training

at compilation time

Traced
Static Graph Forward Graph

« Graph-level optimizations:

» Sparse layer / sparse tensor update

« Operator reordering and in-place update

+ Constant folding

 Dead-code elimination



Sparse Layer / Sparse Tensor Update

. full update sparse update . sparse update + reorder
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Tiny Training Engine supports backward graph pruning and sparse update at IR-level.
After pruning, un-used weights and sub-tensors are pruned from DAG => 8-10x memory saving
Combined with operator reorder => 22-28x memory saving



Tiny Training Engine
OC. . Compile-Time

Python Defined Backward Graph Tune Schedules : Runtime
Models G
\ raph

Calculate derivatives Opt.
at compilation time

Traced Executable
Static Graph e I Binaries for Training

« Graph-level optimizations:
» Sparse layer / sparse tensor update
+ Constant folding

 Dead-code elimination



Operator Reordering and Inplace Update

w/0 reorder

B w/reorder

900

675

450

225

Acc.: 72.0% 73.4% 75.1%

By reordering, the gradient update can be immediately applied.Gradients
buffer can be released earlier before before back-propagating to earlier
layers, leading to 2.7x ~ 3.1x peak memory reduction.



Mem Footprint (KB)|
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(b) Optimized backward graph

Operator life-cycle analysis shows memory footprint
can be greatly reduced by operator re-ordering.
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at compilation time

Tiny Training Engine

Python Defined

Calculate derivatives

Traced
Static Graph Forward Graph

TF-Lite, full

Latency (ms)]

(projected, OOM)

Graph
Opt.

TF-Lite, sparse

Tune Schedules

. TTE, sparse
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Our optimized operators
demonstrate 21x ~ 23x speedup
over TensorFlow-Lite.
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ITiny Training Engine on Diverse Hardware Platforms

B Forward B Backward
40.0 6.0 800 e - e
% 30.0 o 4.5 » 060.0
S S E 3.0x
5 20.0 5 3.0 3 40.0
i) i) i)
S 100 - - S 15 S 200 -
0.0 0.0 0.0 [ —
Dense Update Sparse Update (ours) Dense Update Sparse Update (ours) Dense Update Sparse Update (ours)

Qualcomm S8Gen1 CPU Jetson Nano GPU Raspberry Pi 4B+ CPU

Snapdrogo_n]

.. §

The measured timed includes the complte forward + backward.

The benchmark model is MobilenetV2-035 with input resolution 128x128.

Our engine supports various platforms and our sparse update shows consistent speedup 1.4 to 3.0x.



Federated On-Device Learning

From single device to multiple devices

O
L
I C. 4G/5G
. oflelle|l®[le|f < @ @
/| \
B.
Only gradients are sharing across, the user Connected through WiFi or Cellular network
data never leaves local device. Bandwidth up to 1Gb/s, Latency ~200ms.

Federated learning suffers from limited communication
bandwidth and long latency for mobile devices.



| Deep Gradient Compression: Reduce Bandwidth

Multiple Machines

4 ™ VGG-16 + OpenMP!
-4 M VGG-16 + NCCL
48 VGG-16 + OpenMPI + DGC
Q
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16
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1 2 = 8 16 32 64
# GPUs (RTX 2080 Ti / 25Gbps)

- Reduce the bandwidth by Deep Gradient Compression,

which can reduce the gradients by 500x without losing
Momentum Correction accuracy.

Deep Gradient Compression, ICLR’18



https://github.com/synxlin/deep-gradient-compression

| Delayed Gradient Averaging: Tolerate Latency

Send and recv params Send and recv params
O
W/o delay: all the local machines are blocked to wait With delay: Worker keep performing local updates
for the synchronization to finish while the parameters are in transmission.
16 -~edAvg (K=5)
~edAvg(K=10) 13.1
15 DGA (K=5, D=20)
Q.
5
aé)- 8 7.1 6.8
0p)
4 3.7 33

1.7 1.7 2.1
1.01.01.0 |

0.42:8

Delayed Gradient Averaging, NeurlPS’21



https://dga.hanlab.ai/

| TinyML and Efficient Deep Learning
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