i FIAN LAl

Hardware, Al, and Neural-nets
open source, co-design
http://github.com/mit-han-lab

On-Device Training Under
256KB Memory

Song Han

MIT, OmniML

songhan.mit.edu
mcunet.mit.edu

http://songhan.mit.edu
http://mcunet.mit.edu
http://github.com/mit-han-lab/

Can we Learn on the Edge?

Al systems need to continually adapt to new data collected from the sensors
Not only inference, but also run back-propagation on edge devices

Cloud-based Learning

On-device Learning

TN
_/ :
'J' lIII |I|||Il 3-'
/
New and Sensitive >\
Data
User Intelligent Edge Devices Cloud Server

-On-device learning: better privacy, lower cost, customization, life-long learning

- Training Is more expensive than inference, hard to fit edge hardware (limited memory)

Background work: MCUNet: Bring Al to loT Devices

Unlock ultra low-power AloT Applications

* TinyML: design light-weighted neural networks and deploy on cheap edge devices that has
low power, computing, and memory.

e Low-cost ($1-2), low-power, small, everywhere in our lives.

Al on MCU is hard: No DRAM. No OS. Extreme memory constraint.

* EXxisting work optimize for #parameters, but #activation is the real bottleneck.
* MCUNEet: first to achieve >70% ImageNet top1 accuracy on a microcontroller.
 Cloud Al: ResNet; Mobile Al: MobileNet; Tiny Al: MCUNEet.

~71% top-1 accuracy on ImageNet.

VGG-16
4AMB | o

ry
o
<
0o

3 MB ResNet-18

2 MIB ® MobileNet-V2

1 MB ® MGCUNet-V2

<
0 MB
2013 2015 2017 2019 2021

Peak Activation Memo

I Background work: MCUNet-v2: Patch-Based Inference

Detect person using only 30KB of memory!

A MCUNetV2 ¢ MCUNet | Peak SRAM (kB) @ 90% VWW accuracy
& MbV2+TF-Lite Proxyless+TF-Lite o0
94 |
62kB + 118kB
é 92 oulrns;(l);t;oné +4.0% 56kB constraint 90
o | Laosmatr on Mg o
;‘ 90 T E smaller
> our solution 60
< 88 In 2020 /
3 our solution ,
2 o In 2019 : M
S : >0
Flash < 1MB
84
20 88 156 224 292 360 0

MCUNet MCUNetV2
Measured Peak SRAM (kB)

MCUNet V2, NeurlPS’21

https://hanlab.mit.edu/projects/tinyml/mcunet/

Training Memory iIs much Larger than Inference

500

375

e
(,.‘\ S o“: N b | []
“E O P e, TS
Seand o, Raspberrvy Pi 1 DRAM
oy X 2 2z ”\

2 5 O ------------------------------------ @ , k ’
% N/ 256MB

MbV?2
Memory Footprint (MB)

125

0 I
Inference Training
Batch Size = 1 Batch Size = 8

» Edge devices have tight memory constraints. The training memory footprint of
neural networks can easily exceed the limit.

» Edge devices are energy-constrained. Failing to fit the training process into the
energy-efficient on-chip SRAM will significantly increase the energy cost.

I #Activation is the Memory Bottleneck, not #Trainable Parameters

B ResNet-50
800
600
400 /X larger
200
0

Param (MB) Activation (MB)

I #Activation is the Memory Bottleneck, not #Trainable Parameters

B ResNet-50 B MbV2-1.4

800
v 1-1x The main bottleneck does not
600 improve much.
400 /X larger
200
y 4.3
N T

Param (MB) Activation (MB)

* Previous methods focus on reducing the number of parameters or
FLOPSs, while the main bottleneck does not improve much.

| What about just finetune the last layer?

[ResNet-50 (Full) B ResNet-50 (Last)

95 800
86 600
/7 TT

Significant 400
58 accuracy

degradation!
59 200
50 0

Accuracy (%) Memory Cost (MB)

 Full: Fine-tune the full network. Better accuracy but highly inefficient.
 Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.

| Related Work: Parameter-Efficient Transfer Learning

B ResNet-50 (Full) B ResNet-50 (Last) ResNet-50 (BN+Last)

95 30
86 :
20
77 :
12X
68 .
10
59 .
4
50 0
Cars Top1 (%) #Trainable Param (M)

* Full: Fine-tune the full network. Better accuracy but highly inefficient.
 Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.
. . Fine-tune the BN layers and the last layer. Parameter-efficient.

| Related Work: Parameter-Efficient Transfer Learning

B ResNet-50 (Full) B ResNet-50 (Last) ResNet-50 (BN+Last)

95 800

86 600 -

- 1.8x Parameter-efficiency

200 v does not directly
68 translate to memory-
efficiency (12x vs 1.8x)

50 200

50 0

Cars Top1 (%) Memory Cost (MB)

 Full: Fine-tune the full network. Better accuracy but highly inefficient.

 Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.

. . Fine-tune the BN layers and the last layer. Parameter-efficient, but the
memory saving is limited.

I Parameter-Efficiency does not Directly Translate to Memory-Efficiency

B ResNet-50 (Full) M ResNet-50 (Last)

95

86

77

68

59

50

 Full: Fine-tune the full network. Better accuracy but highly inefficient.

800
12.%
- 600
v
400
200
0

Cars Top1 (%)

ResNet-50 (BN+Last)

1.8X

Memory Cost (MB)

Parameter-efficiency does
not directly translate to
memory-efficiency

 Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.
. Fine-tune the BN layers and the last layer. Parameter-efficient, but the
memory saving is limited. Significant accuracy loss.

| TinyTL: Memory-Efficient Transfer Learning

[ResNet-50 (Full) I ResNet-50 (Last) ResNet-50 (BN+Last) B TinyTL (ours)

95 800
A :
86 12% 600 —
1.8X
77 : :
400 ¥ 6x
68 5
59 200 :
50 0 L
Cars Top1 (%) Memory Cost (MB)

 Full: Fine-tune the full network. Better accuracy but highly inefficient.

 Last: Only fine-tune the last classifier head. Efficient but the capacity is limited.

. . Fine-tune the BN layers and the last layer. Parameter-efficient, but the
memory saving is limited. Significant accuracy loss.

* TinyTL: fine-tune bias only + lite residual learning: high accuracy, large memory saving

NeurlPS’20

On-Device Training under 256KB Memory

* Reducing memory usage by >1000x

5256KB constraint

- 652 MB
TensorFlow (Cloud)—
: 303 MB
Py Torch (€10 U C) |———
: 41.5 MB
MNN (edge)—
E 5.7 MB
Tiny Training Engine S < 7.3X
o _ E 4.1MB
+ Quantization-aware scaling S < 1.4X
1420 KB
+ Sparse layer/tensor update IEE———— < 10.1x
~ |149kB
+ Operator reordering mm «—— 12.8Xx
< 2077x

0.1 MB 1 MB 10 MB 100 MB

1. Address Optimization Difficulty of Quantized Graphs

» Fake quantized graph vs. Real quantized graph

value range
(-6,6)
project back :
(-127, 127) |
round (w/ STE) :
(127, 127)

project to int8 range

o) R veighs
(@) Fake Quantization (b) Real Quantization
(quantization aware training) (on-device training)
Fake Real
Weight FP32 INTS
Activation FP32 INTS
Batch Norm Yes No

1. Address Optimization Difficulty of Quantized Graphs

* Real quantized graphs vs. fake quantized graphs

Making training difficult:
» Mixed precisions: int8/int32/fp32...
» Lack BatchNorm

Performance Comparison (average on 10 datasets)

10.6%

N’P'u

(a) Real Quantization.

Top-1 Accuracy (%)

FP32 Int8
SGD SGD

1. Address Optimization Difficulty of Quantized Graphs

- Why is the training convergence worse?

log;o([IWII/[[GII)

1. Address Optimization Difficulty of Quantized Graphs

- Why is the training convergence worse?

- The scale of weight and gradients does not match in real

quantized training!

35 .
— fp32 — |ntn8
15 | V /\ /\/\/\/\ /\/\/\/
| |
5
-5

Tensor Index

QAS: Quantization-Aware Scaling

QAS addresses the optimization difficulty of quantized graphs

Quantization overview

Vints = cast2int8(sep3z * (WintsXints + b;nesz)l,

Per Channel scaling

quantize —
W=8W°(W/Sw) ~ SW°W, GWzSW’GWa

Weight and gradient ratios are off by Sw

IWI/IGwl =~ [W/swll/lsw - Gwll =[5 { W/ G

Thus, re-scale the gradients
Gw =Gw -sw, Gp=Gg sw - 5x-=Gg- 57

log;o([IWII/[[GII)

35

25

15

QAS: Quantization-Aware Scaling

QAS addresses the optimization difficulty of quantized graphs

N e o2 Al (2 2
Gw =Gw sw, Gp=Gg: sw - sx

= Gg - s

—2

QAS aligns the W/Gl
ratio with fp32

— fp32

A

A

A

A

h

W)

— Int8

1l

iINt8+QAS

A

MV

Tensor Index

QAS: Quantization-Aware Scaling

QAS addresses the optimization difficulty of quantized graphs

Performance Comparison (average on 10 datasets)

. Improve e
:CHUN © converge I -

FP32 SGD Int8 SGD Int8 LARS Int8 Adam Int8 QAS

Extra memory (ours)
(3x)

Top-1 Accuracy (%)

2. Sparse Layer/Tensor Update

W., b, B updated O fixed

W, b,

(a) full update (b) bias-only update (c) sparse layer update d) sparse tensor update

2. Sparse Layer/Tensor Update

Wi by

(a) full update (b) bias-only update (c) sparse layer update

Dense Backward

(H, N) (N, M) (H, M)

Activation to store: (
Weight in SRAM: (M, H)

i I

ﬁ
Reduce by 4x

B updated O fixed

(H, M)

Activation to store: (H, 0.25*M)

Weight in SF

AM: (0.25*M, N)

Average Acc (%)

Sparse Update: Lower Memory, Higher Accuracy

update last k biases

<150kB

€ 3% smaller upper
hlgheracc bound

155 270 385
Extra Memory (KB)

(a) MCUNet-5FPS

500

Average Acc (%)

@ update last k layers

@ sparse update (ours)

72
AN 12 |SOANET) s X
0 -~ Upder §
bound
68 :ﬁ)
oN
=
66 ;;
64 y
40 110 180 250 545
Extra Memory (KB)

(b) MbV2-w0.35

75
73
71
69
67
65

/a
40 110 180 250 524
Extra Memory (KB)

(c) Proxyless-w0.3

Sparse update can achieve higher transfer learning accuracy using
4.5-7.5x smaller extra memory.

3. Tiny Training Engine (TTE)

compile time runtime ,

Il Vewar = 0 = |
e BN O EE OEE 8 ¢

backward graph
(a) input model (b) compile-time autodiff (c¢) graph pruning (d) op reordering (e) on-dev1ce training

online
update

Previous DL Training

1. Computation Graph (forward)

Previous DL Training

1. Computation Graph (forward)

@ 2. Autograd Engine

J(x) = f(x)
(o

Previous DL Training

1. Computation Graph (forward) 3. Computation Graph (backward)

@ 2. Autograd Engine ‘@'

J(x) = f(x)
(o (ous)

Previous DL Training

1. Computation Graph (forward) 3. Computation Graph (backward)

@ 2. Autograd Engine ‘@'

J(x) = f(x)
(o (ou)

4. Execution Engine

Detailled execution schedules.

Limitations with Previous Training Infra

* Runtime Is heavy
 Autodiff at runtime
* Heavy dependencies and large binary size

» Operators optimized for the cloud, not for edge

* Memory is heavy
* A lot of intermediate (and unused) buffers

» Has to compute full gradients

Tiny Training Engine

- Compile-Time

o =
R/
Python Defined Backward Graph Tune Schedules : Runtime
Compile-time Opt.
Traced
Static Graph

AutoDiff

Forward Graph

CodeGen . E_xecutable_ .
Binaries for Training

Tiny Training Engine (TTE) separates the runtime and compile-time.

TTE offloads most workloads like autodiff / graph optimization / perform tuning into compile-time.
Thus, the overhead of runtime is minimized.

Tiny Training Engine Workflow

: Compile-Time
Pythl\(/)lrclxlj)eel;lned Backward Graph Tune Schedules : Runtime
Graph
Calculate derivatives Opt.
CodeGen : E_xecutable_ :
Binaries for Training

at compilation time

Traced
Static Graph Forward Graph

« Graph-level optimizations:

» Sparse layer / sparse tensor update

« Operator reordering and in-place update

+ Constant folding

 Dead-code elimination

Sparse Layer / Sparse Tensor Update

. full update sparse update . sparse update + reorder
5000
4,510
4,226
>
3790
<
= 28X 22X
s 2500 smaller smaller
v 24x
o smaller
A 1250
425 l 537 °

140

MbV2 Proxyless MCUNet

Tiny Training Engine supports backward graph pruning and sparse update at IR-level.
After pruning, un-used weights and sub-tensors are pruned from DAG => 8-10x memory saving
Combined with operator reorder => 22-28x memory saving

Tiny Training Engine
OC. . Compile-Time

Python Defined Backward Graph Tune Schedules : Runtime
Models G
\ raph

Calculate derivatives Opt.
at compilation time

Traced Executable
Static Graph e I Binaries for Training

« Graph-level optimizations:
» Sparse layer / sparse tensor update
+ Constant folding

 Dead-code elimination

Operator Reordering and Inplace Update

w/0 reorder

B w/reorder

900

675

450

225

Acc.: 72.0% 73.4% 75.1%

By reordering, the gradient update can be immediately applied.Gradients
buffer can be released earlier before before back-propagating to earlier
layers, leading to 2.7x ~ 3.1x peak memory reduction.

Mem Footprint (KB)|

512

384 -

256 -

128 -

Life Cycle Analysis

Inference Training (activation) . Trammg (weights) B Training (gradients)] Trainable weights
' ' ' , , 512 g g g g i | | i
1n place
384 |

30 60 90 120

Life cycle (operator index)

(a) Vanilla backward graph

256 |

128 -

150 180 210 240 270 300 0 30 60 90 120 150 180 210
Life cycle (operator index)

(b) Optimized backward graph

Operator life-cycle analysis shows memory footprint
can be greatly reduced by operator re-ordering.

fusion

240

operator

270

300

at compilation time

Tiny Training Engine

Python Defined

Calculate derivatives

Traced
Static Graph Forward Graph

TF-Lite, full

Latency (ms)]

(projected, OOM)

Graph
Opt.

TF-Lite, sparse

Tune Schedules

. TTE, sparse

14000

10500

7000

3500

8,501

3,448

MbV2

T

21x

|

403

smaller

10,523

smaller

4,111

|

23X

457

Proxyless

13;398

5,607

MCUNet

23X
smaller

: Compile-Time

- Runtime

Executable
Binaries for Training

Our optimized operators
demonstrate 21x ~ 23x speedup
over TensorFlow-Lite.

|
4 U

Ih

WW

class 1

Ground True

class i

www.ot.com/:tmamvdlseovory‘ T ’

Ol@ , (ol &

‘PrEd1Ctlon

m'a'l'a't'u'l'u 'l'ﬂfuw "
m - _-. LA 4 ‘,
§ "'". ' :... e

..3..1 A\ ASS

T —

tion:

21 correct
Incorrect

ITiny Training Engine on Diverse Hardware Platforms

B Forward B Backward
40.0 6.0 800 e - e
% 30.0 o 4.5 » 060.0
S S E 3.0x
5 20.0 5 3.0 3 40.0
i) i) i)
S 100 - - S 15 S 200 -
0.0 0.0 0.0 [—
Dense Update Sparse Update (ours) Dense Update Sparse Update (ours) Dense Update Sparse Update (ours)

Qualcomm S8Gen1 CPU Jetson Nano GPU Raspberry Pi 4B+ CPU

Snapdrogo_n]

.. §

The measured timed includes the complte forward + backward.

The benchmark model is MobilenetV2-035 with input resolution 128x128.

Our engine supports various platforms and our sparse update shows consistent speedup 1.4 to 3.0x.

Federated On-Device Learning

From single device to multiple devices

O
L
I C. 4G/5G
. oflelle|l®[le|f < @ @
/| \
B.
Only gradients are sharing across, the user Connected through WiFi or Cellular network
data never leaves local device. Bandwidth up to 1Gb/s, Latency ~200ms.

Federated learning suffers from limited communication
bandwidth and long latency for mobile devices.

| Deep Gradient Compression: Reduce Bandwidth

Multiple Machines

4 ™ VGG-16 + OpenMP!
-4 M VGG-16 + NCCL
48 VGG-16 + OpenMPI + DGC
Q
>
g gsparsified A g g 30
t Gradient Accumulation | (%
16
8 _=I—-_Lu_Lu_|_‘_‘_._

1 2 = 8 16 32 64
GPUs (RTX 2080 Ti / 25Gbps)

- Reduce the bandwidth by Deep Gradient Compression,

which can reduce the gradients by 500x without losing
Momentum Correction accuracy.

Deep Gradient Compression, ICLR’18

https://github.com/synxlin/deep-gradient-compression

| Delayed Gradient Averaging: Tolerate Latency

Send and recv params Send and recv params
O
W/o delay: all the local machines are blocked to wait With delay: Worker keep performing local updates
for the synchronization to finish while the parameters are in transmission.
16 -~edAvg (K=5)
~edAvg(K=10) 13.1
15 DGA (K=5, D=20)
Q.
5
aé)- 8 7.1 6.8
0p)
4 3.7 33

1.7 1.7 2.1
1.01.01.0 |

0.42:8

Delayed Gradient Averaging, NeurlPS’21

https://dga.hanlab.ai/

| TinyML and Efficient Deep Learning

https://hanlab.mit.edu/

~ 1. Learning both Weights and 14. MCUNget, NeurlPS’20
(()) o Models Connections for Efficient 15. MCUNet-V2. NeurlPS’21
Single Y Neural Network, NeurlPS'15 16 Tiny11 NeuriPS'20
ley Sensor oy 2 DeepCompression, ICLR'16 17 MCUNet-V3, Axiv'22
=l Classic Inference ¥ 5. AMC, ECCVITS 18. DGC, ICLR'18
4. ProxylessNAS, ICLR’19 19. DGA. NeurlPS’21
{1 5. Once For All, ICLR’20 ,
Software Hardware IR4E , 20. BVCNN, NeurlPS'19
15F 6. HAT ACL'20 21. Fast-LiDARNet, ICRA'21
Training Quantum A /. Anycost GAN, CVPR2T 22. BEVFusion, Arxiv’22
[:_:—{@ O 8. SPYNAS, ECCV21 23. TSM, ICCV’19
Multi-Sensor 9. Lite Pose, CVPR22 24. GAN Compression, CVPR’20
Sparse Fusi 10. NAAS, DAC’21 ' ’
Big Foundation :I\SIOH 11' o t’ NAS. HPCAD? 25. SpAtten, HPCA’21
Models (@@)) - SUGIIIRAS, F 26. SpArch, HPCA’20
< 12. QuantumNAI, DAC’22 27. PointAcc, Micro’20
13. QOC, DAC’22 28. TorchSparse, SysML’22

http://hanlab.mit.edu
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1510.00149
https://hanlab.mit.edu/projects/amc/
https://hanlab.mit.edu/projects/proxylessNAS/
https://hanlab.mit.edu/projects/ofa
https://hat.mit.edu/
https://hanlab.mit.edu/projects/anycost-gan/
https://spvnas.mit.edu/
https://github.com/mit-han-lab/litepose
https://hanlab.mit.edu/projects/naas
http://qmlsys.mit.edu/
http://qmlsys.mit.edu/
http://qmlsys.mit.edu/
https://hanlab.mit.edu/projects/tinyml/mcunet/
https://hanlab.mit.edu/projects/tinyml/mcunet/
https://hanlab.mit.edu/projects/tinyml/tinyTL/
https://arxiv.org/abs/2206.15472
https://github.com/synxlin/deep-gradient-compression
https://dga.hanlab.ai/
http://pvcnn.mit.edu/
https://hanlab.mit.edu/projects/spvnas/
https://arxiv.org/abs/2205.13542
https://hanlab.mit.edu/projects/tsm/
https://hanlab.mit.edu/projects/gancompression
https://spatten.mit.edu/
https://sparch.mit.edu/
http://hanlab.mit.edu/projects/pointacc
https://torchsparse.mit.edu/

JUi
—J ‘ e

4

-
&%

i TR

SRGBRRRRRRRRERARRRENIN

N\

—
| —

MIT Al Hardware
Program

MIT Microsystems Technology Laboratories (SoE)
MIT Quest for Intelligence — Corporate (SCC)

Co-Leads: Jesus del Alamo and Aude Oliva

Internal Advisory Board Chair: Anantha Chandrakasan

TinyML and Efficient Al

1T FIAN LA

Hardware, Al and Neural-nets

C) qithub.com/mit-han-lab

B voutube.com/c/MITHANLab

@ songhan.mit.edu
tinyml.mit.edu

] QUALCOAMN el 4 € XILINX

Sponsors: NVIDIA

amazon n sony &P

HYUI'IDFII

VentureBeat

. MIT 1
Media: echnoogy !lispectrum MIIGEEE engadget

Review

https://songhan.mit.edu
http://hanlab.mit.edu
http://youtube.com/c/MITHANLab
https://github.com/mit-han-lab

