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Can we Learn on the Edge?
AI systems need to continually adapt to new data collected from the sensors 
Not only inference, but also run back-propagation on edge devices

●On-device learning: better privacy, lower cost, customization, life-long learning

●Training is more expensive than inference, hard to fit edge hardware (limited memory)

User Intelligent Edge Devices

New and Sensitive 
Data

…

Cloud Server

On-device Learning

Cloud-based Learning



Song Han: Efficient Deep Learning Computing with Sparsity

Background work: MCUNet: Bring AI to IoT Devices
Unlock ultra low-power AIoT Applications
• TinyML: design light-weighted neural networks and deploy on cheap edge devices that has 

low power, computing, and memory. 

• Low-cost ($1-2), low-power, small, everywhere in our lives.

• AI on MCU is hard: No DRAM. No OS. Extreme memory constraint.

• Existing work optimize for #parameters, but #activation is the real bottleneck.

• MCUNet: first to achieve >70% ImageNet top1 accuracy on a microcontroller.

• Cloud AI: ResNet; Mobile AI: MobileNet; Tiny AI: MCUNet.
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Detect person using only 30KB of memory!

4
MCUNet V2, NeurIPS’21
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Background work: MCUNet-v2: Patch-Based Inference

https://hanlab.mit.edu/projects/tinyml/mcunet/


Training Memory is much Larger than Inference

0

125

250

375

500

M
bV

2
M

em
or

y 
Fo

ot
pr

in
t (

M
B)

Inference
Batch Size = 1

Training
Batch Size = 8

• Edge devices have tight memory constraints. The training memory footprint of 
neural networks can easily exceed the limit. 


• Edge devices are energy-constrained. Failing to fit the training process into the 
energy-efficient on-chip SRAM will significantly increase the energy cost.

Raspberry Pi 1 DRAM 
256MB



#Activation is the Memory Bottleneck, not #Trainable Parameters
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#Activation is the Memory Bottleneck, not #Trainable Parameters

• Previous methods focus on reducing the number of parameters or 
FLOPs, while the main bottleneck does not improve much. 

0

200

400

600

800

Param (MB) Activation (MB)

ResNet-50 MbV2-1.4

The main bottleneck does not 
improve much.

4.3x

1.1x

7x larger



What about just finetune the last layer?

• Full: Fine-tune the full network. Better accuracy but highly inefficient. 
• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited. 
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Related Work: Parameter-Efficient Transfer Learning
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• Full: Fine-tune the full network. Better accuracy but highly inefficient. 
• Last: Only fine-tune the last classifier head. Efficient but the capacity is limited. 
• BN+Last: Fine-tune the BN layers and the last layer. Parameter-efficient.
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Parameter-Efficiency does not Directly Translate to Memory-Efficiency
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TinyTL: Memory-Efficient Transfer Learning

NeurIPS’20
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On-Device Training under 256KB Memory

• Reducing memory usage by >1000x

+ Operator reordering
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41.5 MB
PyTorch (cloud)

TensorFlow (cloud)

MNN (edge)

Tiny Training Engine

+ Quantization-aware scaling

+ Sparse layer/tensor update

256KB constraint
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1. Address Optimization Difficulty of Quantized Graphs

(b) Real Quantization  
(on-device training)

(a) Fake Quantization  
(quantization aware training)

Fake Real
Weight FP32 INT8

Activation FP32 INT8
Batch Norm Yes No

• Fake quantized graph vs. Real quantized graph



1. Address Optimization Difficulty of Quantized Graphs
• Real quantized graphs vs. fake quantized graphs

Making training difficult: 
• Mixed precisions: int8/int32/fp32… 
• Lack BatchNorm
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1. Address Optimization Difficulty of Quantized Graphs

- Why is the training convergence worse?  



1. Address Optimization Difficulty of Quantized Graphs

- Why is the training convergence worse?  
- The scale of weight and gradients does not match in real 
quantized training!
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Quantization overview

Per Channel scaling 

Weight and gradient ratios are off  by Sw

Thus, re-scale the gradients

QAS: Quantization-Aware Scaling
QAS addresses the optimization difficulty of quantized graphs



-5

5

15

25

35
fp32 int8 int8+QAS

Tensor Index

lo
g 1

0(∥
W

∥/
∥G

∥)

QAS aligns the W/G 
ratio with fp32

QAS: Quantization-Aware Scaling
QAS addresses the optimization difficulty of quantized graphs
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QAS: Quantization-Aware Scaling
QAS addresses the optimization difficulty of quantized graphs



Wi Wi+1bi bi+1

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

updated fixed

c1

c2

2. Sparse Layer/Tensor Update



Reduce by 4x
Activation to store: (H, M)

Weight in SRAM: (M, H)

Wi Wi+1bi bi+1

(a) full update (b) bias-only update (c) sparse layer update (d) sparse tensor update

updated fixed

c1

c2

Dense Backward

G.T
X

(dW).T

=

(H, N) (N, M) (H, M)dy
dw

:

Activation to store: (H, 0.25*M)

Weight in SRAM: (0.25*M, N)

Sparse Tensor Backward

G.T
X

(dW).T

=

(H, N) (N, M) (H, M)

X
(dw).T

dy
dw

:

2. Sparse Layer/Tensor Update



Sparse Update: Lower Memory, Higher Accuracy

Sparse update can achieve higher transfer learning accuracy using 
4.5-7.5x smaller extra memory. 



3. Tiny Training Engine (TTE)



Previous DL Training

1. Computation Graph (forward)



Previous DL Training

1. Computation Graph (forward)

2. Autograd Engine

f(x) → f′ (x)



Previous DL Training

1. Computation Graph (forward)

2. Autograd Engine

f(x) → f′ (x)

3. Computation Graph (backward)



Previous DL Training

1. Computation Graph (forward)

2. Autograd Engine

f(x) → f′ (x)

3. Computation Graph (backward)

4. Execution Engine

Detailed execution schedules.



Limitations with Previous Training Infra

• Runtime is heavy

• Autodiff at runtime

• Heavy dependencies and large binary size

• Operators optimized for the cloud, not for edge


• Memory is heavy

• A lot of intermediate (and unused) buffers

• Has to compute full gradients



Tiny Training Engine

CodeGen

Tune Schedules

Executable 
Binaries for Training

Python Defined 
Models

Traced 
Static Graph Forward Graph

Backward Graph

Compile-time 
AutoDiff IR IR

Graph 
Opt.

: Runtime

: Compile-Time

Tiny Training Engine (TTE) separates the runtime and compile-time.

TTE offloads most workloads like autodiff / graph optimization / perform tuning into compile-time. 

Thus, the overhead of runtime is minimized.



• Graph-level optimizations:

• Sparse layer / sparse tensor update

• Operator reordering and in-place update

• Constant folding

• Dead-code elimination 

Tiny Training Engine Workflow

CodeGen

Tune Schedules

Executable 
Binaries for Training

Python Defined 
Models

Traced 
Static Graph Forward Graph

Backward Graph

Calculate derivatives 
at compilation time IR IR

Graph 
Opt.

: Runtime

: Compile-Time



Tiny Training Engine supports backward graph pruning and sparse update at IR-level.

After pruning, un-used weights and sub-tensors are pruned from DAG => 8-10x memory saving


Combined with operator reorder => 22-28x memory saving
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• Graph-level optimizations:

• Sparse layer / sparse tensor update

• Operator reordering and in-place update

• Constant folding

• Dead-code elimination 

Tiny Training Engine
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Operator Reordering and Inplace Update

By reordering, the gradient update can be immediately applied.Gradients 
buffer can be released earlier before before back-propagating to earlier 

layers, leading to 2.7x ~ 3.1x peak memory reduction.



Life Cycle Analysis

Operator life-cycle analysis shows memory footprint 
can be greatly reduced by operator re-ordering.

Life cycle (operator index)

(a) Vanilla backward graph (b) Optimized backward graph
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Tiny Training Engine

CodeGen

Tune Schedules

Executable 
Binaries for Training

Python Defined 
Models

Traced 
Static Graph Forward Graph

Backward Graph

Calculate derivatives 
at compilation time IR IR

Graph 
Opt.

: Runtime
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On-Device Training Demo
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Tiny Training Engine on Diverse Hardware Platforms
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The measured timed includes the complete forward + backward.

The benchmark model is MobilenetV2-035 with input resolution 128x128.


Our engine supports various platforms and our sparse update shows consistent speedup 1.4 to 3.0x.

Qualcomm S8Gen1 CPU Jetson Nano GPU Raspberry Pi 4B+ CPU



Song Han: Efficient Deep Learning Computing with Sparsity

Federated On-Device Learning
From single device to multiple devices

52

Only gradients are sharing across, the user 
data never leaves local device.

Connected through WiFi or Cellular network 
Bandwidth up to 1Gb/s, Latency ~200ms.

4G/5G

Federated learning suffers from limited communication 
bandwidth and long latency for mobile devices. 
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Deep Gradient Compression: Reduce Bandwidth

53
Deep Gradient Compression, ICLR’18
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- Reduce the bandwidth by Deep Gradient Compression, 
which can reduce the gradients by 500x without losing 
accuracy.

https://github.com/synxlin/deep-gradient-compression
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Delayed Gradient Averaging: Tolerate Latency

54
Delayed Gradient Averaging, NeurIPS’21
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https://dga.hanlab.ai/
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https://hanlab.mit.edu/
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Project 1: ”Efficient Hardware Primitives for Sparse Linear Algebra” 

Pruning techniques [Han’15] show that DNN models can be pruned to very sparse, 
saving the FLOPs by 10x and model size by 8x (FC layer, index included). However, it’s 
challenging for general purpose hardware to take advantage of sparsity. EIE [Han’16] is 
the first hardware accelerator for sparse DNN, it’s efficient but it lacks flexibility. TACO 
[Kjolstad’17] is a flexible compiler for sparse linear algebra on CPU, but it lacks 
accelerator support. Therefore, I plan to work on an specialized accelerator for sparse 
linear algebra. There are two basic operations to be accelerated: union (OR) and join 
(AND). Software implementation need O(n) cycles. I plan to work on O(log(n)) time 
complexity, O(n) area complexity arrays; or O(1) time complexity, O(n^2) space 
complexity arrays. After that, I’d like to implement this architecture in FPGA or ASIC, 
then integrate the HW primitive into TACO. Then, I want to co-design the machine 
learning models that are not only pruned to be sparse, but also with the optimal 
granularity of sparsity that fits the accelerator. Lastly, I’ll demonstrate a few machine 
learning applications accelerated with such sparse primitives: machine translation, 
speech recognition, image classification, and Progressive GAN, which makes real-time 
AI and embedded-AI possible for IoT devices. It can also make cloudAI more energy 
efficient by saving the electric bill and total cost of ownership (TCO).


Potential product impact for NVIDIA: future DLA architectures in Xavier, Orin, etc.


Project 2: “Optimal Number Representation for Efficient Training/Inference” 

“Number representation” is a fundamental problem for efficient machine learning. For 
inference, Linear Quantization [TensorRT] or Kmeans Quantization [Han’16] are two 
extremes of quantization. The former has easy hw implementation but poor 
expressiveness. The latter has inefficient hw implementation (need register lookup 
every time) but flexible expressiveness. For training, Conventional fp16 or fp32 are also 
inefficient, since training DNNs needs more dynamic range and exciting methods need 
careful scaling factor tuning to avoid underflow or overflow [NVIDIA’17]. Given the large 
design space, we are interested in learning to learn the optimal number representation 
for deep learning. The design space include:  
[linear quantization, log quantization, kmeans quantization] x 
[weight, activation, gradient] x  
[training, inference] x [channel number] x [layer number] x [bit width] x [decimal point]  
This is a large design space that’s hard to be explored by human. It should be explored 
by AI. I plan to use machine learning techniques to find the best number representation 
for machine learning. It’s a co-design of number representation together with model 
architecture, trading off hardware efficiency and model accuracy. I’d like to push the 
pareto frontier of such trade-off. 


Potential product impact for NVIDIA: future TensorRT and cuDNN libraries.


HAN Lab Students: Yujun Lin (Arch PhD), Hanrui Wang (Arch PhD), Zhijian Liu (ML PhD)
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